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Abstract 

Electroencephalography (EEG) is a non-invasive method of 
measuring cortical activities in association to speech 
communication. Recent studies have shown that EEG at multiple 
channels across head scalps were colinearly entrained to speech 
envelope. They were able to reconstruct speech envelope from 
EEG across scalp by using ridge regression. However, the 
predicted speech envelopes reconstructed by this linear model 
approach did not yield a high correlation when compared with 
the original speech envelopes. The outcome of those studies 
inspired us to explore a non-linear alternative with Deep 
Learning in reconstructing speech envelope from EEG. We 
proposed and developed an Encoder-Decoder model based on 
Convolutional (CONV) and Long-Short-Term-Memory (LSTM) 
layers to non-linearly reconstruct speech envelope from EEG. 
Our finding showed that correlation between the original speech 
envelope and the predicted speech envelope reconstructed with 
our model yielded a much higher value than the equivalence 
reconstructed with a linear model and a single-layer LSTM 
model. Our Encoder-Decoder model outperformed the 
regularized linear regression and the single-layer LSTM model 
with 134% and 21% improvement in correlation.  
Index terms: Electroencephalography, Encoder-Decoder, 
Convolution, Long-Short-Term-Memory, Speech Envelope 
Reconstruction 

1. Introduction 
In our early study [9], we implemented a multivariate Temporal 
Response Function (mTRF) [4] to show the linear relationship 
between speech envelope and the EEG recorded at scalp 
electrode locations around the vertex of the head. We utilized the 
ridge regression in mTRF to reconstruct speech envelope of each 
single passage from the corresponding EEG recorded when 
subjects listen to the passage. The original mTRF model [5] was 
able to map the linear relationship between each EEG-speech 
envelope pair, but it did not generalize the relationship and 
assimilate into the model itself. To improve the generalization 
process in the model, we modified the mTRF model to update its 
randomly initialized weights at each EEG-Speech sample pair, 
instead of initializing separate weights for each sample pair. 

Despite the effort to optimize the model, the correlation with 
mTRF remained low, as shown in Table 1. 

In the current study, we attempted to address the above 
issue using Deep Learning method, which is one promising 
technology to solve generation and classification problems. To 
date, Deep Learning methods [1, 4, 12, 13] have been deployed 
in the reconstruction of speech from brainwaves, including 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Fully Connected Layers, and their 
combinations. Sakthi et al. [13] showed that the single-layer 
LSTM model with 100 modes in LSTM layer outperformed 
mTRF model [4] in reconstructing speech envelope from EEG. 
They found that the correlation (RHO) between the raw and 
predicted envelopes was 30% higher than that with the predicted 
envelope reconstructed by mTRF [5]. When our early work 
applied the single-LSTM model to our dataset, we did observe 
the improvement in RHO as compared to that with mTRF 
model. Despite improvement, the simplicity of the single-layer 
LSTM model may not be able to efficiently generalize EEG to 
speech envelope relationship. The benefit of the Encoder-
Decoder architecture is to compress high-dimension 
representations of inputs into low-dimension and high-quality 
representations that the compression process reduces noise 
present in the input layer [3]. Raskov et al. [11] successfully 
implemented Autoencoder, an Encoder-Decoder variant, to 
establish the relationship between EEG and images. 

The above-mentioned outcome has inspired us to combine 
the roles of Convolutional layer [14] and Long-Short-Term-
Memory layer [13] to map EEG as input to speech envelope as 
output. We developed an Encoder-Decoder model composed of 
1-Dimensional Convolutional layers as Encoder and LSTM 
layers as Decoder. The CONV layers were used in extracting 
feature representations of 2-dimensional data, which was the 
channel-by-time EEG data, and used in converting the feature 
representations into latent-space weights which would be learned 
by LSTM layers. During training, Gradient Back-Propagation 
technique [8] was used to minimize the error between the 
predicted and original speech envelopes to optimize latent-space 
weights [6]. As designed following the Encoder-Decoder 
architecture [3], our model attempted to yield latent-space 
weights which finally formed the mapping functions between 
EEG and speech envelopes. 



Figure 1 shows the structure of our proposed Encoder-
Decoder model . The Encoder consists of 3 Convolution blocks 
of 1-Dimensional Convolutional layers followed ReLU 
activation functions. Each Convolution block is followed by a 1-
Dimensional MaxPooling layer to downsize captured features. 
The Decoder consists of 3 LSTM layers which are commonly 
used in Machine Translation [10]. The final layer is a Fully 
Connected (Dense) layer to reconstruct speech envelopes from 
corresponding EEGs. 

2. Experiment 
In this experiment, we implemented a linear model and two non-
linear models, i.e., mTRF [5], a single-layer LSTM model [13], 
and our proposed model, respectively, and compared their 
performance on the same EEG-Speech dataset in the task to 
reconstruct speech envelopes. 

2.1 Data and Materials 

2.1.1 Participants 

This study was approved by the Lamar University IRB 
committee. Eight native English speakers (5 males and 3 
females) with normal hearing (verified at a local hearing clinic) 
of age from 20 to 24 participated in this study. All participants 
reported no history of neurophysiological disorders and were not 
tired or sleepy at the time of data acquisition. 

2.1.2 Stimuli 

Four speech fragments spoken by a male speaker and four 
speech fragments spoken by a female speaker were extracted 
from two separate audio books and adjusted to three sound 
pressure levels (SPL’s): (75, 65 and 55 dB). Two types of noise, 

i.e., White and Babble noise, were generated at three SPL’s (75, 
65 and 55 dB) and mixed with the speech to produce stimuli at 
different signal-to-noise ratios (SNRs) and speech levels. Note 
that speech at 75 dB SPL and noise at 65 dB SPL was 
considered a different listening condition than a speech at 65 dB 
SPL and noise at 55 dB SPL, even though both stimuli had same 
SNRs of 10 dB. Therefore, the stimuli pool consisted of 24 
original and 96 noisy speech fragments. 

2.1.3 EEG Recording 

Audible stimulation was delivered diotically to the participants 
via Etymotic insert earphones (Etymotic Research ER3A, 10 W 
impedance). Stimuli presentation was synchronized with the 
EEG recording via evoked EEG was recorded via the ASA-
Lab40 acquisition system by ANT Neuro, Netherlands. 
Continuous EEG was pre-filtered in 0.3-50 Hz range, notch-
filtered at 60 Hz, sampled at 1,024 Hz, and recorded from 32 
electrodes positioned according to the extended International 
10/20 placement map. EEG was processed offline by first 
fragmenting it into epochs synchronized with stimulation. Each 
epoch was baseline-corrected and filtered with a CAR spatial 
filter to reduce surface currents. 

2.1.4 Data Augmentation 

Both EEG and speech recordings were down-sampled to 256 Hz. 
Before training, normalization was performed to scale EEG 
signals to the range of -1 and 1, and to scale speech envelopes to 
the range of 0 and 1. Data normalization is a necessary for time-
series forecasting [2]. EEG-Speech recordings in our dataset also 
varied in length, which also posed difficulties on fixed-length 
computations. Each EEG-Speech recording was processed in a 
1-s short-time window moving at the step of 125 ms. This 

Figure 1: Encoder-Decoder model with CNN for Encoder and LSTM for Encoder. CONV1D: 1-Dimension Convolutional layer; 
ReLU: Rectified Linear Unit; MaxPool: 1-Dimension MaxPooling layer; @#-#: filter size – kernel size; LSTM – Long-Short-
Term-Memory; FC: Fully Connected layer. 



method allowed us to generate more data to better generalize our 
model. 

2.2 Methods 

For the linear model, we implemented an mTRF model, and 
trained the model as according to the original study [5], which 
was based on Ridge Regression, on our dataset for baseline 
performance verification. For comparison with the other 
nonlinear methods under the similar optimization criterion, we 
modified the training process and updated the weights of mTRF 
model by minimizing the Mean Squared Error (MSE) between 
the predicted and original speech envelopes for each EEG-
Speech sample pair. For the nonlinear models, we first 
implemented a single-layer LSTM model with 100 nodes 
followed by a Dense layer of 256 nodes and trained the model 
for 500 epochs as according to [13] as one of the comparing 
models. The loss function used for training was the Mean 
Absolute Error (MAE) [16] and was optimized by Adam 
protocol [7]. Finally, in our proposed model, all Convolutional 
layers in Encoder were configured with a kernel size of 3 and 
with same padding. Three Convolution blocks had two 32-node 
CONV layers, two 64-node CONV layers, and three 128-node 
CONV layers respectively. In Decoder, 3 LSTM layers were set 
to 128 nodes. The output layer was a Dense layer with 256 nodes 
to reconstruct speech envelopes at an interval of 1-s. Our 
model’s loss function was calculated by MSE; and the model 
was trained and optimized by Adam protocol for 200 epochs. 

3 Results 
Table 1: Mean Pearson R (RHO), MSE, and MAE of predictions 
by mTRF, the single-layer LSTM model, and our model on 
validation dataset. 

 RHO MSE MAE 
mTRF 0.261 0.056 N/A 

Single-LSTM 0.506 N/A 0.104 
Encoder-Decoder (ours) 0.613 0.019 N/A 

 
Our dataset was randomly split: 80% for training and 20% for 
validation. We trained all 3 models on the training dataset and 
validated them on the validation dataset. Table 1 shows the 
performance of 3 models on the validation dataset. 

In Table 1, we can observe that our model outperforms the 

single-LSTM model and mTRF, i.e., with RHO 0.613 vs. 0.506 
and 0.261 of the single-LSTM model and mTRF, respectively. 
This results into 134% and 21% improvement in RHO.  

Similarly, our model outperforms mTRF with MSE at 0.019 
compared with MSE at 0.056 of mTRF. These results showed 
that the non-linear LSTM-based models performed better than 
the linear-like models in generalizing EEG-Speech mappings. 

In Fig. 2, we plot an original sample of speech envelopes 
and the corresponding speech envelopes predicted by the single-
LSTM model and our model. We observed that the fluctuation of 
the predicted speech envelopes reconstructed with both our 
model and the single-LSTM model corresponded to the original 
speech envelopes, even the magnitude was not scaled to the 
same range. However, the predicted speech envelopes 
reconstructed with our model fluctuated less than the speech 
envelopes reconstructed with the single-LSTM model, as shown 
in Fig. 3. These results showed that the Encoder-Decoder model 
were able to reconstruct more highly correlated speech 
envelopes than the single-LSTM model.  

In Fig. 3, during the training phase, we observed that our 
model encountered underfitting in correlation despite 

Figure 2: Plot of a 1-s sample of original speech envelope 
and the corresponding speech envelope predicted by our 
model. Original: original speech envelopes; Encoder-
Decoder: speech envelopes predicted by our model; Single-
LSTM: speech envelopes predicted by the Single-LSTM 
model 
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Figure 3: Plot Mean training and validation MSE and Pearson R (RHO) for our model’s predictions. Train_mse: training MSE; 
val_mse: validation MSE; train_pearson_r: training Pearson R; val_pearson_r: validation Pearson R. 
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encountering neither overfitting nor underfitting in loss. The 
observed underfitting may result into the predicted speech 
envelopes which are less identical in shape to the original speech 
envelopes. The underfitting correlation could be resolved by 
increasing training time and complicating model’s parameters. 
Also, we observed our model converged faster than the single-
LSTM model. Our model achieved the validation correlation 
larger than 0.6 after 200 epochs, as shown in Fig. 3; and the 
single-LSTM achieved the validation correlation larger than 0.5 
after 500 epochs, as shown in Table 1. 

4 Discussion 
Instead of having a single-layer of LSTM, our proposed 

model takes advantages of the noise reduction of the Encoder-
Decoder architecture [3] to reconstruct the predicted speech 
envelopes with higher correlation when compared with the 
original speech envelopes. The results in this work showed that 
the Encoder-Decoder architecture was beneficial in tasks of 
generating the generalized mapping function between EEGs and 
speech envelopes. On the other hand, the limit of this model is 
the large difference in magnitude between the original and 
predicted speech envelopes. This may be due to the small size of 
the original dataset that each distinct EEG-Speech record has 
only 144 samples. Despite effort in augmenting data to generate 
more data, the small size of the original dataset limits our 
model’s performance. In future work, more  data will be 
collected and/or augmented to generalize our proposed model; 
and the current model will be modified to address the large 
magnitude difference and the underfitting issues. 
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